(1/n+3)+(5/n^2-9)=(2/n-3)

Simple and best practice solution for (1/n+3)+(5/n^2-9)=(2/n-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/n+3)+(5/n^2-9)=(2/n-3) equation:


D( n )

n = 0

n^2 = 0

n = 0

n = 0

n^2 = 0

n^2 = 0

1*n^2 = 0 // : 1

n^2 = 0

n = 0

n in (-oo:0) U (0:+oo)

1/n+5/(n^2)-9+3 = 2/n-3 // - 2/n-3

1/n-(2/n)+5/(n^2)-9+3+3 = 0

1/n-2*n^-1+5/(n^2)-9+3+3 = 0

5*n^-2-n^-1-3 = 0

t_1 = n^-1

5*t_1^2-1*t_1^1-3 = 0

5*t_1^2-t_1-3 = 0

DELTA = (-1)^2-(-3*4*5)

DELTA = 61

DELTA > 0

t_1 = (61^(1/2)+1)/(2*5) or t_1 = (1-61^(1/2))/(2*5)

t_1 = (61^(1/2)+1)/10 or t_1 = (1-61^(1/2))/10

t_1 = (1-61^(1/2))/10

n^-1-((1-61^(1/2))/10) = 0

1*n^-1 = (1-61^(1/2))/10 // : 1

n^-1 = (1-61^(1/2))/10

-1 < 0

1/(n^1) = (1-61^(1/2))/10 // * n^1

1 = ((1-61^(1/2))/10)*n^1 // : (1-61^(1/2))/10

10*(1-61^(1/2))^-1 = n^1

n = 10*(1-61^(1/2))^-1

t_1 = (61^(1/2)+1)/10

n^-1-((61^(1/2)+1)/10) = 0

1*n^-1 = (61^(1/2)+1)/10 // : 1

n^-1 = (61^(1/2)+1)/10

-1 < 0

1/(n^1) = (61^(1/2)+1)/10 // * n^1

1 = ((61^(1/2)+1)/10)*n^1 // : (61^(1/2)+1)/10

10*(61^(1/2)+1)^-1 = n^1

n = 10*(61^(1/2)+1)^-1

n in { 10*(1-61^(1/2))^-1, 10*(61^(1/2)+1)^-1 }

See similar equations:

| 5a+10=60 | | 4x+3-2x=10 | | -6(4n+6)=5n-17 | | 20x-2.8=25.16 | | 3n*3n=12 | | -6+3+(-4)= | | x^2+3x=-333/4 | | 4x-12=7x-36 | | 3y-4=-2y-14 | | 3n+3n=12 | | 4x-12=7x-46 | | -t=0.4-3 | | 3.5(j+2)=1.4(16+j) | | 3=(m+2) | | A-5=-2 | | .5x-5=.6x+2 | | 18-48= | | y/-15=22 | | 33.25=6.50p-1.75 | | 10n+6=8n-6 | | (x^2+2x-4)(x^3-x^2-12x)=0 | | 4534.16=4*3.14*r^2 | | 4-v/5=0 | | 615.44=4*3.14*r^2 | | 35=-16t^2+48+3 | | 26=g+-3g | | -9=x+7 | | -1/5t-2=4 | | 12d+9d= | | 3n(7n-4n)=81 | | 8-2.5(x+1)=3x-4 | | 1464.9984=4*3.14*r^2 |

Equations solver categories